Dinamika : Gaya Termasuk Vektor


Selain besaran pokok dan turunan, besaran fisika masih dapat dibagi atas dua kelompok lain yaitu besaran skalar dan besaran vektor. Besaran-besaran seperti massa, jarak, waktu dan volum, termasuk besaran skalar, yakni besaran yang hanya memiliki besar atau nilai saja tetapi tidak memiliki arah. Sedangkan besaran seperti perpindahan, kecepatan, percepatan dan gaya termasuk besaran vektor, yaitu besaran yang memiliki besar (atau nilai) dan juga memiliki arah.

Bagaimana Menyatakan Suatu Vektor ?

Dalam fisika, akan selalu membantu jika digambarkan diagram mengenai suatu situasi tertentu, dan hal ini akan semakin berarti jika berhubungan dengan vektor. Pada diagram, setiap vektor dinyatakan dengan tanda panah. Tanda panah tersebut selalu digambarkan sedemikian rupa sehingga menunjuk ke arah yang merupakan arah vektor tersebut. Panjang tanda panah digambarkan sebanding dengan besar vektor.

Sebagai contoh, pada gambar di bawah dilukiskan suatu vektor gaya (F) yang besarnya 40 N (N = Newton, satuan gaya) dan berarah 30o utara dari timur atau 30o terhadap sumbu x positif. Besar vektor F = 40 N dilukiskan dengan panjang anak panah 4 cm. Ini berarti skala yang dipilih adalah 1 cm = 10 N atau 4 cm = 40 N.

 

Aturan Penulisan Vektor

Dalam menuliskan vektor, apabila anda menggunakan tulisan tangan, lambang suatu vektor umumnya ditulis dengan huruf besar dan di atasnya perlu ditambahkan tanda panah, misalnya :

 

Untuk buku cetak, lambang vektor ditulis dengan huruf besar yang dicetak tebal, misalnya F. Untuk besar vektor, apabila kita menggunakan tulisan tangan maka besar suatu vektor ditulis dengan tanda harga mutlak, misalnya :

 

Untuk buku cetak, besar vektor ditulis dengan huruf miring, misalnya F

DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya.

GAYA TERMASUK VEKTOR, penjumlahan gaya = penjumlahan vektor.

Penjumlahan dua buah vektor gaya F1 dan F2:

FR = Ö F12 + F22 + 2 F1F2 cos a
q = sudut terkecil antara F1 dan F2

Untuk menjumlahkan beberapa vektor gaya maka gaya-gaya tersebut harus diuraikan pada sumbu koordinatnya (x,y), jadi:

FR = Ö FX2 + FY2

FX = jumlah komponen gaya pada sb-x
FY = jumlah komponen gaya pada sb-y
FR = resultan gaya

Tinggalkan Balasan

Please log in using one of these methods to post your comment:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s